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THE CLASSICAL FIELD THEORY OF MATTER
AND ELECTRICITY

I. AN APPROACH FROM FIRST PRINCIPLES

By S. R. MILNER, F.R.S.
(First submitted 31 May 1954—in revised form 25 February 1959)

/.
/ B

,_{ ) The late S. R. Milner, F.R.S., Professor Emeritus of the University of Sheffield, who died at Sydney on 12 August
< ~ 1958, left his scientific papers to my care. Among these was the present revised and greatly simplified version of
é —~ the derivation of the extended field equations of electromagnetic theory, which he wrote in 1957. He had no time
o - to revise the second part, the Electromagnetic Theory of Particles. This is published in the original form, as first
= 5 submatted in 1954, except for the necessary changes in references to the first part, and a few pencilled marginal
TO notes which the author wrote in June 1958, shortly before his death. D. GABOR, F.R.S.
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(=7 5 The most desirable classical field theory of the fundamental continuous substratum of matter,
= O from which we can imagine particles are formed, would generally be considered to be the electro-
T O magnetic equations but for the fact that these are not consistent with the permanent existence of
=w electrons. Instead of attempting (as has been usual) to modify the equations by special assump-

tions for the purpose, the problem is attacked here by deriving from first principles field equations
which represent conserved matter; for the failure of the standard equations can be traced to the fact
that they do not admit conservation of energy and momentum in general, but only in simple cases.

The new equations are found to be identical with those of standard electromagnetic theory
except that they contain two extra variables, which indicate the existence of additional energy,
momentum and stress in the field. The two variables, however, come into the equations in a way
which allows them to be included in the charge and current terms, so that they become there
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186 S. R. MILNER ON THE CLASSICAL

concealed and leave the form of the equations virtually unchanged. Consequently they do not

affect the ordinary practical use which is made of the electromagnetic equations; they only come

into open play in fundamental theory and in the presence of charge and current in the field, and

there they remove the difficulties which the electromagnetic field theory in its accepted form

presents.

1. INTRODUCTION

Instandard relativity the theory of matter extended in space is usually confined to regarding
it as a smoothed assemblage of particles and discussing its mechanical features, the encrgy
and momentum densities and associated properties. To get more insight into the con-
stitution of the particles themselves a ‘field’ theory of what we may think of as the funda-
mental continuous matter from which they are formed is also required. This would express
the properties of the matter in terms of field variables and differential equations which show
how their rates of variation are related. The classical electromagnetic theory seemed just
what was wanted for this, but it has turned out to be defective for the purpose. It appears
to be impossible on the Maxwell-Lorentz equations as they stand to devise an electron of
finite mass that will hold its charge together, or even possess accurately the mechanical
properties required of a particle by relativity theory.

The reason for this failure is, I think, that the well-known tensor which expresses the
mechanical properties of the electromagnetic field in the classical theory gives only a part
of the energy, momentum and stress which can be allocated to a field. Without some enlarge-
ment of the tensor it is impossible to make the energy and momentum in the field conserved
when charge and current are present. In this part the problem is discussed of deriving
in the form of a four-square matrix the mechanical tensor of an arbitrary complex vector
field in 4-space. Such a field has more variables than the six electric and magnetic force
components of the classical theory, so it evidently gives scope for the enlargement; but the
determination of the actual terms of the tensor becomes now uncertain unless based on first
principles. One that suffices is that matter is completely defined by an assemblage in matrix
form of its essential properties; its proper mass must then be an invariant scalar magnitude
characteristic of the matrix. The further consideration is much facilitated if the matrix is
expressed in such co-ordinates that it represents a geometrical construct in Euclidean
4-space; its terms then denote the components of the construct, and the magnitude of their
geometrical resultant can be identified with the proper density of the matter. It then appears
that there are two different related matrix forms available, which have the same resultant
magnitude, one which represents the variables of an arbitrary vector field, and the other of
a kind which can denote the mechanical properties of the field. These matrices are neces-
sarily consistent with each other, since each can be regarded as being formed by a decom-
position into different kinds of components of the same portion of fundamental matter.

When the additional energy, momentum and stress which are obtained in this way are
taken into account, the logical difficulties which prevent the standard electromagnetic
equation from being employed as a field theory of fundamental matter are found to
disappear.

2. THE REPRESENTATION OF PHYSICAL QUANTITIES IN A EucLIDEAN FOURFOLD

The development of the method outlined in the preceding section is carried out in § 3;
this section contains an account of some mathematical results which are required in it.
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FIELD THEORY OF MATTER AND ELECTRICITY. I 187

In the restricted theory of relativity, to which the treatment here is confined, the location
of a point in time and space can be made by a ‘space-time’ vector from the origin,

x =[x, . %)) = | (et, 2,1, 2), (210)
which is subject to a geometry defined by its magnitude x, being
Xy = (c%2 —x%—y2—2%) = (Fyx)}, (2-10)
where 7 is a diagonal matrix of the terms (1, —1, —1, —1). By writing
x=|(x; .. %) = |(ct,ix,1y,1z) = {x, (2-2a)
where { is the diagonal matrix of (1,1,1,1), the location can be represented in a fourfold
with Euclidean geometry %y = (%)} = x,. (2:25)

In the above a matrix notation for vectors is used. A plain smaller letter, x, or more
generally a, stands for a column of the four components; when expressed in full it is written,
to save space, along the line of print, and marked by a vertical stroke in front. The symbols
denoting vectors and four-square matrices in Euclidean 4-space are written in italics, small
and capital, respectively; in matrix formulae applying to space-time corresponding roman
letters are used. The transpose of a 42 matrix (rows and columns interchanged) is denoted
by a bar above the letter; correspondingly #, @ stand for rows of the components. According
to ordinary matrix multiplication rules @b is the scalar product

ab = a;b; =a. b, .. a.b,, (2-3a)
but ab is the full matrix ab = [a;b,] (Lk=1..4) (2-3b)
(the square brackets are used to distinguish the matrix as a whole from its representative
term).

While representation in space-time and Euclidean 4-space can be treated by the same
formulae in tensor calculus, in the initial calculations here a material gain of simplicity is
gained by using the Euclidean form only. The use of matrix notation in the formulae and
the enumeration of the 1234 components as ¢?, ix, iy, iz instead of the more common
x, Y, z, ict is required for the same purpose. The final formulae, however, are converted into
standard tensor forms.

The method of representation in a fourfold is commonly restricted to particle-events, but
it may be applied with advantage to other physical quantites which can be denoted by
vectors or systems of vectors. Among other things it ensures that their definitions are in full
accord with the principle of relativity. The simple example which follows brings out some
useful points. Let us represent at a point in the fourfold the mass (in energy units) of a
particle at rest in our space by a vector p,, whose magnitude is p, = m,¢2, drawn parallel to
the ‘time’ axis, 1. If p0 be rotated about the point so as to become p, it will now denote the
mass of the particle in another state. Since angles between x, and x,, &3, ¥, are imaginary,

# must take the form b= 1(p1--08) = |(Poibr ity ib,) (2-4)

when expressed explicitly in real physical terms; and, since the components must all have

the same dimensions, it can be identified with | (w, icg,, icg,,icg,),where w and g are the energy

and the momentum 3-vector. The magnitude of p being unchanged by therotation, we have
po= (p0)} = (w?—c%g?) = myc?.

23-2
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188 S. R. MILNER ON THE CLASSICAL

The points brought out by this example are: first, that the mass of a particle is no more
than the resultant of the physical components into which it has been decomposed by
representation in the fourfold; and secondly, that vectors representing physical quantities
generally, as well as displacements, will possess a simplified kind of complexity in that their
components are not all real. The first point gives some justification for taking over the same
idea here, where the proper density of fundamental matter is regarded as the resultant magnitude of
the 16 terms of a matrix into which it can be decomposed in a similar way to that of the example.
Not only is the second point well recognized, but itis, I think, commonly accepted without
question that vectors like (2-4), the components of which are initially defined as simple,
maintain this simple form however they may be rotated in the fourfold. It has now to be
observed that this view requires some amendment, and that an originally simple vector can be
imagined rotated to such an orientation that tts components must be denoted by fully complex numbers.
As this fact is of special consequence in the developments of § 3, a brief account of the rele-
vant rotation theory is here given. While the general principles are well known, I have not
been able to find in the literature some of the results required.

In what follows R, S stand for the columns of matrices,

] . =1 . . . e . . —1
P 1 . . . . o1 oo —1 .
R=l 1 S L S T D
1 1 —1 1
1 1 1 1
A —1 . . . . o1 oo —1 .
Al e S T DA
1 1 —1 —1
and R ;; denotes the term in the ith row and the jth column of the ath matrix of the column

set R. R and S form the simplest sets of matrices having the multiplication properties of the
1, i, j, k of quaternions; the matrices R, S, possess also the following further properties
which are used later:
(a) Of orthogonality—the reciprocal is the same as the transpose:
(R,)"'=R,; [R) = R,;] (2:6a)

(It is convenient to write R~ as a symbol for a column of the reciprocals |(R;!.. Ry1),
and similarly for S.) By the properties of quaternions we have also

RV = (1R)o,  [(7R)gix = (14 R;)uel-
(b) Of being convertible into each other by means of 5

Soc - ”Rocih Roc = ”Sd”? [(”Roc)ik = ”inajk]‘ (2'6b)
(¢) Of being convertible by transposing suffixes thus
Ry = Sj0 = (Rz'”)ocj; (Rasﬂ)ik = (RiSk)aﬁ‘ (2-6¢)

(d) Of commuting in mutual products
R,S;=S;4R,. (2-64d)
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FIELD THEORY OF MATTER AND ELECTRICITY. I 189

In the same way as in (2-3) the scalar product of a vector ¢ and the column R, 4, R ,, may
be written shortly as aR. This is, of course, a 42 matrix, and its value and that of a similarly
formed 8S (= b,S;) are given in full below

a, —a, —as —a, b, by, by b,
a, a; —a4 4

—b b, —b b
aR:[ , BS=| * bt (2-7)

as a4 4 —ay —~by by by —by
a4 -a3 a2 (ll _b4 "‘“b3 b2 bl

The matrix aR, read by either rows or columns, denotes a set of four perpendicular lines,
each of the same magnitude a, = (@a)?; it will be called an orthogonal vector system. The
resultant magnitude of the whole system, defined as the square root of the sum of the
squares of all the terms of the matrix, is 2a,. 5S is a similar but differently constructed system,
of resultant magnitude 26,.

(a) Rotation wn the fourfold
(1) General and constituent rotations '

If ¢ and d are independent unit vectors, ¢R and dS are each orthogonal, and zR dS
(= dStR), having six independent variables, is a form of the general orthogonal matrix
Q in four dimensions. When Q is pre-multiplied into a matrix denoting an orthogonal
vector system it rotates the column vectors to arbitrary orientations, consistent with their
mutual perpendicularity, and when post-multiplied the row vectors.

The first constituent of €, ¢R, with three independent variables, pre-multiplied into a
given column vector drawn from the origin, will rotate it to an arbitrary direction. The
nature of the rotation can readily be seen by putting ¢, ¢,, zero, and ¢, c,, = cos b, sin 8,
when it is found to consist of simultaneous rotations through the same angle @ in the planes
12 and 34. Similar equal rotations in dual axial planes 13, 42; 14, 23 result when c¢,,¢,;
¢y, €3 are put zero, and when all the components of ¢ are finite, the resultant effect becomes a
rotation in some plane containing the axis 1, accompanied by an equal rotation in the plane
dual to this.

If we write

¢(0,8,¥) = |(cos b, sinf cos @, sinf sing cos ¢, sinf sin @, siny),
it is easy to verify that ¢(0’,4,y) Rc(0,¢,¥) R = c(0+0',4,¥) R, (2:8)

from which it follows that ¢ and ¥ determine the plane, while ¢ expresses the angle, of
rotation. In order to convert time-like components of a rotated vector into space-like ones,
¢ must be imaginary; ¢ then takes on the usual form for a vector

¢ = [(er .. ) = |(cic,de,ic,);

also g =c}—c2—ci—c2=1. (2-9)
(i1) Space rotations

The other constituent of €, dS, denotes similar ‘locked’ rotations; in fact, S is the same
as ¢R, except that the rotation in the plane containing the axis 1, is in the opposite direction.

Consequently, if we degenerate ) by making d = ¢, so that it takes the form ¢R ¢S, the two
rotations in the plane containing axis 1 cut each other out, while those in the dual plane
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190 S. R. MILNER ON THE CLASSICAL

combine in accordance with (2-8) to give a resultant rotation of 26. Since the dual plane
lies wholly in the 3-space 234, tR ¢S denotes a rotation confined to this space. This is shown
by its value in full, with ¢ as in (2-9), given below

0 0 0

s a2 of o B .
RZS — 2—citci4c2 2 CeC,—1,C,)  2(—c,c,Fice,) (210)

2(—c,c,Fice,)  citei—citer 2(—c,0,—icc,) '

2(~_(/‘x(/‘z—‘iclcy) 2(mcycz+ictcx) c%+c%+c§—6§

S O O -

When multiplied into a vector a = |(g,ia,ia,ia,) the matrix (2:10) affects only the space
components; being, however, complex it changes them from simple into complex terms.
This is due to 0 being imaginary; if  is taken to be real the 32 matrix which (2-10) virtually
forms (now real throughout) has been known for a long time (cf. Turnbull 1929) as the
expression of an arbitrary rotation in 3-space.

(iii) Lorentz rotations

In zS-1, which is the same as the transpose of ¢S, and so is readily obtained from (2:7),
the directions of the locked rotations are reversed from those of ¢S. Consequently the rota-
tion produced by ¢R¢S-! is 20 in a plane containing the axis 1 and a line from the origin
in the 234-space defined by ¢ and ¢, with no rotation in the 3-space. This rotation, with ¢
as in (2-9) applied to the vector x (2:2a), is written out in full below

x" = cRtS™1x, (2-11)
ot 2+ c2c2 ¢ — 2i¢,c, — 2i¢,c, —2i¢,c, ct
iz’ 2i¢,c, 242 —cl—c? 2c,c, 2¢,¢, ix
iy | 2ic,c, 2¢,c, 2 —c2+ci—c? 2c,¢, iy |
iz’ 2i¢,c, 2¢,¢, 2c,c, c;—ci—ci+cl||iz

The i’s disappear on multiplying out, and real equations for ¢#, x’, y’, z’ in terms of ¢, . . ¢,
¢t .. z follow. Alternatively (2-11) can be written in space-time terms direct

x' = = RS 1. (2-12)

This form removes all the i’s, and the minus signs from the first row, without other

alteration.
On substituting, we have

¢, = \% (\/(1:11;2/5725 + 1)%, boyrz = 715 vx’:’z (J(l __lvz/cz) - 1)%’ (2:13)

where v = (v2-v2-+02), (2:11) and (2-12) become identifiable as a Lorentz transformation
of co-ordinates in which the axes of the unaccented system are in motion with a velocity
v relative to the accented system, the systems coinciding at ¢ = ¢’ = 0 (cf. Pauli 1921, where
the transformation is given in 3-vector notation).

As ordinarily used the Lorentz transformation (2-12) operates on the space and time co-
ordinates of the system, and so it must always be applied to the system as a whole. In the
representation of this process in the fourfold, the system is regarded as fixed, but it is now



http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FIELD THEORY OF MATTER AND ELECTRICITY. I 191

referred to the accented axes which have been rotated backward with respect to the un-
accented, i.e. by (¢R¢S-!)~l. Rotations are, however, used in a different way here. The
objective is to construct in the fourfold vector fields (fields marked at every point by a
scalar magnitude and a direction of its ‘action’) which may be expected to describe various
aspects of fundamental matter. The direction at any point can be specified by imagining a
small element of the field there to have been rotated from some standard direction (one of
the axes) to its direction in the actual field. Such imagined local rotations clearly have no
effect on the co-ordinate system, and so are not tensor transformations.

The special feature of the foregoing formulation of rotation matrices in 4-space is that it
shows them as products of two independent commuting factors ¢R and dS, so that any rotation is
decomposed into two elementary rotations, which can be carried out in either order. The elementary
rotations are of the ‘locked’ type—simultaneous equal rotations in dual planes—first
brought to light by Eddington in his analysis of E-numbers. They seemed there, one must
admit, rather abstruse conceptions, being treated in a symbolic 16-space, so it is inter-
esting to find them presenting themselves as fundamental constituents of the simple real
rotations in 4-space employed in ordinary relativity theory.

(b) Complex vectors

The fact just mentioned is of some importance here, for these locked rotations, when
applied to a vector whose components have the usual simple, but not all real, form of
x = |(ctixiyiz), say q = |(qg,1q,,1q,,1q,), convert the components into fully complex quan-
tities. To see this consider ¢' = ¢Rq¢ in the simplest case, in which ¢ = [(cos 8, sind, 0, 0);
it gives g, = cosf g, —isinfgq, ¢,=cosfq,—isinfgq,

g, =coslq,—sinfq, q,= Cosﬁqursinﬁqy.} (214)
Hence if 4 is real, ¢; and ¢ are complex; if imaginary, ¢, and ¢,. In combined R- and S-
rotations also, except for the two cases of rotation in a single plane, ¢R ¢S with 6 real, the
rotation in 3-space, and ¢R ¢5-! with § imaginary, the Lorentz rotation, the terms of ¢ will
be changed from simple to complex. Moreover, the general rotation, Q = ¢R dS, so long
as ¢ and 4 are independent and not both real, is itself a fully complex matrix.

Nevertheless, {) remains orthogonal, and this gives a special form to the expression for
the magnitude, supposed real, of a complex vector field in the fourfold. Qg always implies
a conjugate vector Q*¢*, in which every i, explicitly stated or not, is changed in sign. But,
while gg* is the simplest real scalar formed from ¢ and ¢*, it is not invariant; for in

¢'q* = QqQ*g* =7qQ0*¢*
Q* and Q do not cancel as would Q and Q. Further, §g and ¢* ¢*, though invariant, are still
complex scalars; if we put q=p+io, ¢*=p—io, (2:15)
where p, o are columns of four real component quantities, then
99 = (pp—00) +2ipo, g¢*q* = (pp—00) —2ipo.
Consequently (pp—00) and po separately are invariant, but both together are required to
get a real invariant fully characteristic of a vector field of ¢. This is given by

(@9 ¢*q*)* = {(pp—00)2+ 4(po) % (216)
on taking it to have the dimensions of gg*.
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192 S. R. MILNER ON THE CLASSICAL

A complex vector can also be regarded as the sum of two antithetic vectors of the standard
simple term form. Let

q o 7’}*:‘[5‘, q* == 7’*_is*, (2.17)
where re=|(rindr,ir,), s = |(s,is,ds,1s,) (2:17a)
are simple-term vectors like x, so that in a description in space and time 7,..7,, 5, ...
denote real components. The scheme expressing ¢ in terms of these is

= |(r sy, 7y t-isy, ry+isy, 74+isy),
= |(r, 418,y i1, — 8, 17, — 5,5 17, —5,), (2-18)
= 7,-+1s, Ir —8,
the last line being given in the usual notation for 3-vectors. Hence
q* = |(r,—is,, —ir,—s,, —ir,—s,, —1r,—s,). (2-18a)

Using the matrix 7 of (2:1) we have r* = gr, s* = 55, and consequently ¢* = 5(r—1s), as
against ¢* = p—1io. p and ¢ are not vectors like x, however, their components all being real.

BY (2.18) p= l(rt) Sy TSy ”*sz)’ 7= I(St’ Ts Tys TZ). (2'19)

While the decomposition of a complex vector ¢ into reals p and ¢ is useful in simplifying
some calculations, its decomposition into simple-term vectors 7 and s is more useful when
the object is to reduce results to standard tensor forms.

3. FIELD AND MECHANICAL REPRESENTATIONS OF MATTER
(a) Field-matrix representation of matter density
In relativity theory the invariant action d4 of the matter in a small volume

d7 = dxdydzedt
of space-time is found, when all its factors are expressed as real positive numbers, to be
d4 = pyc./—gdr,

where p, is the proper density of the matter, g the determinant of g;;. Action is not, like matter,
in space and time, but a single scalar concept that transcends both sides; in a deductive
theory it is the most fundamental invariant conceivable, and we can imagine matter density
p, and four-volume ,/ — g dr as secondary invariants formed by decomposing it into factors.
Hence, whatever view may be taken of the ultimate nature of the fundamental matter of
the universe which classical theory assumes present, mostly formed into particles, it is
legitimate to regard it here as a continuous basic substance of locally varying density
existing in space and time.

~ The object here is to decompose a scalar function of position representing the density of
this matter into two 42 matrices, of which in each case it is the resulting magnitude, one
denoting a vector field similar to the electromagnetic field but made as general as possible,
and the other the functions of this field which may be expected to express the mechanical
properties of the matter. It will be useful to write kp,, where £ is a dimensional and possibly
a numerical factor, for the ‘density scalar’ to be decomposed. (Another invariant that the
resultant magnitude has been used in electromagnetic theory to define the mass density,
and the assumption that & shall be taken to be 2 instead of unity is useful in discussing this.)
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FIELD THEORY OF MATTER AND ELECTRICITY. I 193

Let us first decompose kp, (expressed in energy units) into two scalar factors, as far as
possible equal, consistent with generality. If we write

kpo = 242§, (8-1)

the factors might be real and equal, imaginary and equal but of opposite signs, or full
complex conjugates, having the dimensions (like electric or magnetic force) of (energy
density)?. By constructing now a 42 matrix in which the 11 term is z,z¥ and all the others

zero, we obtain a form which may be written z2°*, since it is the matrix product of a column

vector z0 (= |(z,000) and a row vector z* (= |(z¥ 000), each being parallel to the time
axis 1, when the matrix is taken to represent a construction in Euclidean 4-space. Thus the
fundamental matter at rest is represented by a vector field parallel to the time axis.

By applying a local rotation transformation to this matrix we should get a representation
of the matter at the point it refers to in another state, as in the example of the mass vector
of a particle. In doing this, however, two somewhat conflicting conditions must be satisfied
at the same time.

(i) Since the general rotation  will convert z° and z°*, even when they are simple
originally, into complex vectors, we have to ensure that they remain conjugate, for it is only
in this way that they can denote a single vector field; and (2) some characteristic scalar of
the matrix must remain invariant and equal to z,z§. The conditions require the resulting

matrix to take the form 22% = Q20 ¥ 20% — Q0,0%()*, (3-2)

and the invariant to be the resultant magnitude of the matrix,
{(22%)i (22%)ift = (z:2)} (28 28)} = 2028 = Fp,. (3-3)

As may be seen from (2-16) the scalar of (3-3) forms the only way of expressing a real magni-
tude for a complex vector field subjected to orthogonal transformations; it also becomes
clear why a square matrix (zz*) (and not simply a single vector z, since the magnitude of
this may be complex) is required for the representation of matter by a vector field.

If now we divide the whole region of the fourfold representation into infinitesimal
elements and rotate the vectors of each by (8-2), with the Q an arbitrary function of x, they
will mark out (when joined up again suitably) the curved lines of a vector field which repre-
sents the local density and state (whatever state it may be that the rotation denotes) of a
distribution of matter which variesinspace and timein as arbitrary a way as can be imagined.
It will certainly not be matter as we know it until some further conditions are imposed;
there is, for instance, no permanence assumed, and it is evident that restrictions of some sort
will have to be imposed before this representation can be fruitful.

(b) The classical energy tensor

In relativity theory the mechanical properties of fluid matter in motion are expressed
by a well-known ‘energy’ tensor
. dxt dxk p dxt dxk
ik 2" 2 0 i .
TE =P s ds — =) dt i’ (3-4)

and a similar process to that employed above can be used to derive this. For this purpose,

instead of factorizing kp,, write the rest matrix of the matter density as £p,(1 1°), where 1°

24 Vor. 253. A.
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194 S. R. MILNER ON THE CLASSICAL

and 19 denote unit vectors parallel to ¥, in column and row forms. Further let the new state
T be obtained by applying the same Lorentz rotation to each vector, so that

Then, when the ¢, are translated into the real quantities v, . . v, by (2-12), this takes the form
1 (1) v, /e (1) v /e (i)v,fe
r @ ufe (S)nafd (Sugd (<)ve
I=5 Dol (F)vufe (=)ot (=)v,v,/c]
(—
)

(3:5)

@) vfe (—)vu /et (=)o, /et (—)vv/c

Equation (3-5) is identical with (3-4) when £ = ¢2 and (3-4) is expressed in terms of ‘ Eucli-
dean’ co-ordinates x* = (¢t,ix,1y,1z). The i’s and minus signs enclosed in brackets indicate
how the matrix of a tensor expressed on these co-ordinates differs from its contravariant
value in terms of &' = (¢t, %, y, z). There are advantages in the Euclidean form in this argu-
ment, the chief being that with it the contravariant and covariant values of the matrix are
the same; hence, for example, its resultant magnitude may be obtained simply by taking
the square root of the sum of the squares of all the terms. The physical significance of the
fact that this is kp, is that the rest mass density of a moving fluid has been decomposed into
16 (although only 10 are different) component mechanical properties of the matter.

As regards the nature of the properties, wherever extended matter is in motion we can
contemplate at any point, in addition to the energy density /¥ and the momentum density
G, two further quantities, the flux of energy, and the flux of momentum, at the point. In
(3+5) the last two quantities are accounted for as the energy and momentum carried along
by the matter, and measured by the rate at which these pass through a unit area fixed in
space normal to the flow. In this way one is led to construct the energy-momentum-flux
matrix T given below, the velocity of light ¢ being introduced so as to make all the terms
have the same dimensions as W

W Wuje Wyfe Wolc

T — X vax vay vaz
G, G, G, G,
G, G, G, G,

Each row in (3-6) denotes the density of a quantity and the x-, y-, z-components of its
vector flux (apart from ¢), the quantities being in successive rows energy and x-, y-, z-
components of momentum. Since ,/—gdVc¢ds, where dV = dxdydz, is invariant, it is
easily seen that 1/,/—gdV transforms as ¢d¢ or dx!, W (= w//—gdV, w = energy trans-
forming like x') as dx!'dx!, G similarly as dx‘dx!, v* as dx*/dx!. Hence 7% transforms like
dx’dx*, and is a contravariant tensor. Its representation in the fourfold, where

(3:6)

¥ = (ctixiyiz) (x = {x)
consequently gives T ={T¢. (8-7)
This introduces the bracketed i’s and signs of (3:5), and the result is identical with (3:5)
if the energy density of the moving matter is taken to be £p,/(1 —v?/c?).

Now just as in the previous case it is possible to suppose the Lorentz rotation producing
(3:5) to be a function of x, and so imagine this matrix to represent the mechanical properties
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ofafluid movinglocallyin an arbitraryway. But before it can be expected to describe actual
matter certain restrictions, essentially of conservation of energy and momentum, must be
imposed on it; and these are found to require that in (3-5) the velocity » must everywhere be
uniform.
(¢) The general “mechanical properties’ matrix

By employing more velocities than » one can specify a matrix, 2 say), which describes
arbitrary densities and fluxes of energy and momentum. Thus v .. v being arbitrary
velocities, in addition to the v of the moving matter which determines the momentum

w 1) Wvdle (i) Widle (i) Wodle
()G, (=) (—)Gof (—)G®
()G, (—)Gp® ()G (—)G®|
()G, ()G (—)Caf (—)C.u®

(3-8)

2 is a representation in Euclidean co-ordinates, given by introducing the scheme of
bracketed i’s and signs (8-5), since in it momentum and velocity are antithetic to energy.
The matrix, however, is no longer the outer product of a vector with itself; it is not a tensor
but a matrix of 16 virtually arbitrary terms which does not keep its form after equal Lorentz
rotations of its row and column vectors. It is clear that extensive limitations must be placed
on the v before (3-8) can denote the properties of an element of fundamental matter, but
assuming this done, we see that the matrix can be interpreted as rows showing energy and
component momentum densities and their fluxes, as before, but now the fluxes must be
pictured as traversing the matter, in so far as the v differ from v.

In classical physics matter in such a state is regarded as being under stress. Through
any area imagined in the matter and moving along with it a force is being exerted pro-
ducing, say, positive momentum on the far side of it. At the same time the reaction force
produced an equal amount of negative momentum on the near side, which may cancel
positive momentum originally there. In any case just the same effect is produced as if
there were a bodily flow of positive momentum from the near to the far side through the
area. Further the work done by the stress at the moving area produces effectively a flux of
energy in a similar way.

Let P be a stress system carried along with the matter, then P, (for example) denotes the
vector thrust exerted forwards through a unit area perpendicular to x and moving with the
matter, and P, P,,, F,, are the components of P,. (Negative components denote tensions
through the areas.)

When this stress is assumed present in the system (3-7) with » no longer necessarily
uniform, the fluxes through an area fixed in space will be increased (of momentum by P,,
and of energy by the scalar product (vP,), =v,F,+v, P, +v P, through the unit area

v xy
normal to x, etc.), and the matrix 7" will be changed to one of the general type X, in which

W {@)/ W+ (vP,)} {D)/H{Wo,+(VP)} {()/c} {Wo,+(VP.)}
1) G, (=) (G +Ey) (=) (Geo, +F,) (=) (Gyv.+Fy)
@) G, (=) (Gu.+Fy) (=) (G, +Fy) (=) (G +F,)
@) eG, (=) (Gt E) (=) (G.v,+F,) (=) (G.v.+E,)

z= . (39)

24~2
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Since ¢G = (v/c) W, the 16 arbitrary variables of (3-8) have been reduced to 13 in (3-9),
but there is still ample scope to impose the further restrictions required.

Let us finally write the single symbol S (components S,,S,,S,) for the vector flux of energy
in (3-9), and denote the momentum flux components in terms of a single stress system /7, i.e.
11, = G,v,+F,, etc.; then

wo @S ©)S,/e  (i)S./e

> (I)CGx (*—)th (_)ny (7~)Hzx (310)
(I)CGy (M)ny (—«)Hyy (_)sz
(1) CGz (—) sz (—) Hyz (*) sz

In (3-10) the 32 matrix // (without the minus signs), measuring the fluxes of momentum
through areas fixed in space, is a stress system of the stationary type envisaged by Maxwell
in the electromagnetic field. Being stationary, it can do no work, and so cannot account for
the energy flux; this has therefore to be entered in the matrix as a separate concept, S, as
the Poynting flux is in electromagnetic theory.

2/is evidently a very wide form capable of describing the most varied mechanical states
of fundamental matter imaginable, whether these are possible or impossible in Nature.
It is also important that the velocity of bodily motion that was present at the start has
disappeared from open expression ; we are, therefore, nolonger obliged to think of the changes
that take place as being produced by the movement of identifiable matter, but can regard
them as caused by the rise and fall with time in related ways of the 16 component terms of 2.
This, of course, is essential for a field theory of matter.

(d) Relation between field and mechanical matrices

The matrix (3-10) is well known in electromagnetic theory, but I hope that the method
of approach to it made here will not be considered unduly long, because it has been required
in order to bring out some features of the matrix not ordinarily recognized. The three forms
of X, (3-8), (8+9) and (3-10) emphasize different aspects of the matrix; it denotes in the first
a set of four rows of densities and corresponding fluxes, in the second a material fluid moving
under stress, and in the third a set of densities and stresses varying at each point with the
time, as in the theory of the electromagnetic field.

It is evident that there is no difference in principle between the 2 of (3-8) and the 7 of
(3-5) ; consequently, in laying down the restriction that the (otherwise arbitrary) X' should
apply to fundamental matter, the first requisite is that the resultant magnitude of X shall
be required to remain the same as its value, £p,, in 7" This fits in well with the classical idea
that a stress system is devoid of mass, for this condition by itself requires that the stress
system P of (3-9) must be limited in such a way that when superposed on 7"it does not alter
the proper density of the matter. The same argument shows, however, that the Maxwellian
stress /7 in (3-10) is not devoid of mass; it requires to be included in the calculation of the
mass density, kp,, and this is a feature of (3-10) which is not usually taken into account.

When the condition that the resultant magnitude £p, is to be kept unchanged is main-
tained, the change from 7" to X can be looked on as a very general kind of transformation,
for it converts the representation of the same portion of matter from one state 7" in which
the fluxes are solely due to convection, to another X in which they are of the most general
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kind possible. In view of this it is perhaps not surprising to find that the rest mass density
scalar kp, can be decomposed into a matrix of the X-type by a transformation which corre-
sponds to that by which the field matrix (zz*) of (3-2) was developed; in consequence there
exists also a general transformation which converts one of these matrices into the other.
This transformation, which has been studied in a previous paper (Milner 1952), where it
was called an ‘e-transformation’, is as follows: for any 42 matrix 4 an ‘e-transform’ (denoted
by ¢4) may be obtained by evaluating either of the expressions (readily proved to be
equivalent by (2-6))

‘4d=34,,R,S;=$S;AR;. (3-11)
The detailed value given below,
(Ayy+Agy) + (Agg+Ayy) (Ayy— ;) — (Agy—Ays)
eA _ 1 ( A21) (A34 A43) ( 11+A 2) (A33+A44)
—(dyy—Agy) + (Apy—As) (Agg+Asp) 4 (A1 +Ay)
—(dyy—Ayy) — (Ag3—Asy) (Agq+Agp) — (Ays+ )
(A A31) + <A24 A42) <A14 ) (A23 32)
(Agg+Azp) — (414 +44y) (AgytAyp) + (A3 Ayy) (312)
<A11+A 3) — (Agg+Ayq4) (A3q+Ayg) — (Ap+4y)
(A ) I’—( 12 ‘_AZI) ( 11 + A44) ( 22+A 3)

shows that ¢4 is also a certain type of transpose of A. After expressing each term of 4 as the
sum of its symmetric and antisymmetric parts, (A4, +A4,;) and $(4,—A4,).. (@ <k),
interchange (A4;,+4,,) with — (Agy—Ay3), (Aj3+4s;) with + (A, —A4y,), (4,4+A4,) with
— (Ay3—45,), and the non-diagonal terms of 4 are obtained. The diagonal terms also are
formed on a simple principle. The resultant magnitude is unaffected by the transformation
(¢4, 24, = Ay A;) 5 also a repetition of the process brings us back to 4 again; thus 4 and ¢4
are e-transforms of each other. o
In the case of the field matrix (zz*) the e-transformation gives

¢(zz%) = 32,2, RS, = 1ZR z*S = Z, say. (3-13)

This produces a remarkable change in the character of the matrix, and in the physical
interpretation it admits. The non-diagonal terms of (zz*) are complex, but in Z the
imaginary parts of these have become shifted to the first row and first column, excluding
the 11 term, in such a way as to make these wholly imaginary, and all other terms wholly
real. The rows now denote four simple-term vectors, of which the first is antithetic to the
other three, so that they can stand for energy and momentum densities and fluxes. Zin fact
takes on exactly the form required for the X of (3-8). The row vectors are not arbitrary,
however; it follows from (3-13) and (2:7) that they are equal in magnitude and mutually
perpendicular. This limitation reduces the independent variables of Z to the same number
as those of (zz*).

These considerations serve to justify the basic assumption of the analysis. This is that the
rest-mass density scalar £p, of fundamental matter can be decomposed into, or alternatively
regarded as the resultant of, the component terms of two matrices, (zz*) and Z, the first
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198 S. R. MILNER ON THE CLASSICAL

denoting in 4-space a complex vector field, and the second its energy-momentum-flux
mechanical properties.

The assumption is confirmed by evaluating Z in detail, when a correspondence between
it and the similar matrix of standard electromagnetic theory becomes apparent. To bring
this out, write as in (2-18)

z=-e+ih = |(¢,+ih, ie,—h,, .., ie,—h,),|

. o . (3-14)
z* = ¢* —ih* = |(¢,—1h, —ie,—h,, . ., —1ezﬂ~hz),’

when (zz*) can readily be evaluated, and then Z (= ¢(zz*)) from (3:12). The Z so obtained
is given below, but for convenience it is separated into two parts, ‘Z and "Z, ‘Z consisting
of all the parts of terms which contain the suffix ¢, and 7Z of the remainder.

Z=Z+"Z, (3-15)
where
i L(e?+h) —1i(e,e,+Mh,) ”"i(etey"‘hthy) —i(ee,+hh,)
oy |t b)) eh,—ehy  —(ehy—eyhy)
i(etey +}llhy> — (e,h,—e h,) 3(ef+-h2) eh.—e.h, ’
Wee,+hh,)  ehy—ely  —(gh—eh) (e +h7)
L(e2 e 42+ h2+h2-+-h2) i(e,h,—e,h,)
7 i(e,h,—e,h,) 3(e2—e2—e24-h2—hi—h?)
i(e,h,—e.h,) e.e,+h.h,
i(e,h,—e,h,) e.e,+h.h,
i(e,h,—e.h,) i(e,h,—e,h,)
e.e,+hh, e.e,+h.h,
Y(—ei4-e2—e2—h2-+h2—h?) e e,+h,h,
e,e,+h,h, $(—e2—e2+e2—h2—hZ-+h?

Examination of (3-15) shows that”Zis identical with the standard value of the mechanical
matrix 2 of an electromagnetic field ¢, . . £, when these are reckoned in Heaviside units, and
note is taken of the fact that Z includes the i’s and signs of (3-10) due to its being a repre-
sentation in Fuclidean 4-space.

¢+ih is, however, a 4-vector field representing a completely arbitrary distribution of
matter, and it contains components ¢, and %, which are not included in the standard electro-
magnetic field. These give rise to the part ‘Z of Z, which has some significant features com-
plementary to those of 7Z. Thus, part from the diagonal terms, ‘Z constitutes the anti-
symmetric part of Z. Again each term ‘Z;, has a different pair of suffixes ¢, x, y, z from the
corresponding "Z;, ; it thus represents another kind of component associated with the dual
plane, which provides an unsuspected place for it, so to speak, in the theoretical picture.
As a result of these properties ‘Z and "Z satisfy a general condition of perpendicularity

Ly = 0, (3-164a)
while the squares of their respective magnitudes simply add together to form that of Z

Z L+ 72y Ly = Ly Zy,. (3-165)

[
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All this forms evidence that ‘Z is soundly formulated as the extension of the standard 7Z
to take ¢, and 4, into account, and so far as I can see it is the only systematic one possible.
But it must be observed that the formula (3-13) defining Z is not necessarily unique, for
other forms might have been chosen which, while retaining the resultant magnitude in-
variant, give results different in detail (e.g. ?(z*Z), }R;(zz*) S;, etc.). An explanation is
that electromagnetic theory contains many conventional definitions, such as the signs of
e and h in relation to charge, axes, etc., and an examination of a number of these forms
shows that they are merely variants of this sort, which can be brought to the form (3-15)
by suitable identification of symbols.

4. RELATION OF FIELD EQUATIONS OF MATTER TO ELECTROMAGNETIC THEORY
(a) The field equations

So far the field of ¢ and % considered has been taken to be arbitrary in the 4-space; its
mechanical properties Z, vary therefore arbitrarily with time, as well as through space.
In classical theory, where we are not yet concerned with uncertainty, an arbitrary time
variation, though imaginable, must be taken as impossible in Nature. A system passes
from one configuration to another by a definite ‘natural’ path, which is determined by
applying the principle of stationary action. The principle might be applied either to the
¢, h field directly, or to the equivalent picture of fluid matter in motion under stress. The first
method is more laborious because electromagnetic tubes in four dimensions are required
for discussing the variations, but the two methods have been shown to lead to identical
conclusions in the case of the electromagnetic field where free of charge (Milner 1928).
It is consequently simpler to rely on the second method here, since this can now be used
by our basic assumption of the complete equivalence of the ¢, £ field with the matter. The
principle leads at once to the classical laws of motion, which state that the rates of increase
of the momentum, and of the energy, or any element of fluid matter are given by the
resultant force on it, and the activity, of the accompanying P-type moving stress of (3-9).
A further direct development is the conclusion that, if the fluid matter is isolated from
external forces, the laws of motion may be equivalently expressed by the equations

ow aS, G, iL; (L,k=x9,z

0~ ox. 0F Ox, (xk:x,y,z)'
These are well-known equations in electromagnetic theory—the first states that the rate
of increase of the energy in a unit volume fixed in space is equal to the net rate at which
energy is carried out of the volume by the flux S; the second that the rate of increase of each
component of positive momentum in the unit volume is equal to that component of the
resultant force of the stress /7 on the volume.

In what follows partial differentiation with respect to x; will be denoted by 9;, and a
column and a row of the four d, by @ and 9, respectively. When converted into space-time

(41)

terms
a a ad 4
d= I(al . 04) = (i—at3 i’a—xa m: i’a'Z)a (4-2(1)
which will be abbreviated to
d= ‘(aiﬂ '_iax: —iaya _‘iaz)n (4'2[7)

while its conjugate 0% = |(0y, +i0,, +i0d,, +1d,) = nd. (4-2¢)
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When equations (4-1) are converted into their representations in the fourfold, by writing
. 1 ¢ J Ja .
W=2y, Gi”'zzzir) Sk‘—izlka Il = — 2y, mzcan @:lak (4-3)

(i,k=x9,zin G,S,/T=2,3,4in X,0).

in accordance with (3-10) and (4-2), they become expressed by the single form

0,2, =0 (L,k=1..4). (4-4)
Since Z is a special case of the general 2, the equation

denotes the limitation which the principle of action places on the otherwise arbitrary values imaginable
of the variation with time of the mechanical quantities contained in Z, and therefore on the variables
¢ ..¢,h..h, ofthe field of basic matter.

Physically, (4:5) means that conservation of energy and of each component of momen-
tum holds in the field; geometrically the meaning is that each of the 4-vectors formed by
the rows of Z has zero divergence—a property that enables it to be visualized in the form of
a tube of constant flux in 4-space.

To apply the condition (4-5) we can write, by (3-13) and (2:64), Z in the two forms

Z = }(2R) (z*8) = (z*S) (zR),

and use the second and first of these expressions for differentiating the z and z* factors,
respectively. This gives

akzik = %(Fs)ij ak(ZR)jk+%<ZR)ij ak(z*s>jk = Y. (4‘6)
Now, by (2:65) and (4-2¢),

ak(Z*S)jk = ak(zj;”leﬂlm”mk) = 3:(77sz§R/ﬂm)3
consequently (4-6) becomes
$(2*8);;0,(ZR) 5+ $(2R); 1;,0%(z*R),, =
This is a set of four (one for each value of /) non-linear differential equations which an

otherwise arbitrary complex vector field in 4-space must satisfy in order that it may account
fully for the mechanical behaviour of fundamental matter required by classical relativity

mechamcs. If we write ak(ZR)jk — ___qj, a;x;(z_*R)lm — __ql*, (47>

then either of these conjugate equations defines a derived vector field ¢, (¢*), which is
completely determined when the field z, (z*) is given; and these two fields must satisfy the

condition —3(z*8);;4;+ (ZR);; (ng*);} = O. (4-8)

In this way (4-6) has been split into two sets of equations, one of which is differential (and
now linear), and lays no restrictions whatever on z, but merely defines a field ¢ derived
from z, and the other is a set of restrictions in the form of four algebraical relations between
z,z* and ¢, ¢*. (The suffixes in these equations are all written below, in the way usual
with matrix formulae. It will be proved later that (4:7) and (4-8) are tensor equations.)
These equations may now be dealt with separately.
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(b) The extended electromagnetic equations
Taking (4+7) first, putting ¢ = r+1s, and writing the first equation ’

i (e+ih) Ry + (r+is); = 0, (49)
we can convert this into its space-time form by using formulae (4-2), (2:7), (3-14), (218).

It then becomes the set of four complex equations given below
(3atet_ axex“ ayey - azez + rt) +i(0clhl - axhxw 3yhy - 0zhz +st) = O’
i(actex” axet'— ayhz + azhy + rx) - (acthx~ 0xht+ 31/62 - 0zey +sx) = 0,
1(d,e,—0,6,—0,h,+0,h,+1,)— (0,h,—0,h,+0,6,—0,e,+s5,) =0,
1(0,.6,—0,6,—0,h,+0,h.+1,)— (0,h,—0,h,+0,e,—0,¢,+5,) = 0.

(4:10)

Equation (4-10) is identical with the standard electromagnetic equations, apart from
the extra terms in e, £, 5,..s,; it is evident, however, that extra terms are required to
describe an arbitrary vector field in 4-space. The relation to the standard equations becomes
still more marked on denoting by single symbols the ¢, and r, and the %, and s terms. Let

Ji=r+0q0, k=s+0,h,
Je =T, —0c6, k,=s5,—0.h, (4100)
Jy=T1y—0,6, k,=s,—0,h,

o=r—d,ey k, =s,—0,h,
Then, on substituting these in it, equating separately to zero the real and imaginary parts,
and expressing it in the usual 3-vector notation, (4-10) becomes

1

dive :jt = rt—'_%—aa_e;,

1de .

—cﬁ—curlhz—,] :_‘"{r'—gradel}) (4 11)
divh = k,:s,+—lc~%’§‘,

%%It—l—l—curle — k= —{s—gradh).

The two left-hand parts are now exactly the Maxwell-Lorentz equations with j,, j denoting
electric charge and current densities, except for the inclusion of magnetic charge and current
densities, k, K. The essence of the extensions contained in (4-10) has now been concentrated into the
right-hand parts of (4-11), which define charge and current densities in a more general
way than does standard theory.

In the classical theory the six variables ¢, . . &, are derived from a 4-potential ® and the
same applies to the eight variables ¢, .. &, of the extended equations as a result of the
following simple proposition:

Let ¢ = ¢ +iy be an arbitrary complex vector field, and ¢ a field defined by

g =004, (4:12a)
then, if z is another field, defined by  z = JR, (4-120)

25 Vor. 253. A,
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202 S. R. MILNER ON THE CLASSICAL
since JR"1JR = 741 we shall have the equation
IR 1z—g=0. (4-12¢)

The last equation when expressed in full is (4-10), and the defining equations of e, 4, r
and s are given by (4:12a,b) as

¢,-+1h, = (actlﬁt“‘ax’ﬁx”‘ay’/fy“az’/fz) +i(acht”‘8xXx—ayXy“‘azXz)>
ie,—h, =100, ¥, —0,Y:+0,X:—0.%,) = (Qede— 0 =0, ¥, +0.9,),
ie,—h, =1(0, ¥, —0,¥,+0. X~ 0:X2) — (0esXy— Oy Xe— 0. ¥ +0,¥2), (412d)
ie,—h, =1(0,¥,—0.¥,+0,%,—0yXe) — (0oX:— 0 X — 0¥, +0,,),
(ryo 18y .8,) = (05,—05—05—00) (Y- - Vs W - - X))
The corresponding formulae for ¢, . . £, in the classical theory are
e, =—0,0,—0,0, h =0,0,—3,

x zFy

etc., in cyclic order. In the classical theory @ has 4 real space-time components. Equation
(4-124d) is evidently its extension to a complex 4-potential. This fact affects the equations
defining e, £ and r, but not j, which is defined in accordance with the classic form.

(¢) The conservation restrictions on the equations

In so far as they are not limited unwittingly by the background of physical ideas which
we associate with the names ‘electric and magnetic force, charge and current’, equations
(4-11) hold identically in an entirely arbitrary complex vector field in 4-space. This field,
however, must be subjected to the conservation restrictions (4-8) before it can serve as a
satisfactory representation of fundamental matter. (4-8) may be reduced to a somewhat
simpler form as follows:

If we write it as 258 5 45+ 2, (R M)y + i = 0,
it can be converted by (2-6¢) into

¢ Rypzf+ 2, Ry g = 0,
which can be written in the shorter matrix form

7(R;z*) +2(R;q%) = 0. (4-130)
Each of these terms denotes a scalar product of two vectors, e.g. of ¢ and the permuted and
sign-changed vector R;z* derived from z*. Converted to space and time terms the equations
become e,r,+ (er)+h,S,+(hS) =0 for i=1 (a)l

¢,r+er,+[rh] +4s+hS,—[se] =0 for (i=2..4) (b)]

where (..) denotes the scalar, and [..] the vector product of the included space vectors,
e = (¢,¢,¢,), €tc.

It is interesting at this stage to see how these restrictions operate in electromagnetic
theory. Let us consider separately the question of the conservation of the energy in the two
parts *Z and "Z of the energy-momentum-flux matrix (3-12). Taking 7Z first, it is easy to
verify from (4-10), (4-11), that

(4-13b)

F P F
€0,7Z,, = a—t%(e§+e§+e§—}—k§+h§+/z§) +%c(eyhz—ezhy) +8—yc(ezlzx~ex/zz)

d . : :
+9‘£c(exhy—eyhx) = —c(e g+ , e . thk Rk AR k,).  (4:14)
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This is a well-known classical formula when & = 0, and it is sometimes referred to as if it
indicated conservation of energy in the field, whereas except in fields free of currents it
states just the opposite of this. It states that the rate at which the energy in a fixed unit
volume is increasing with the time (the first term of the middle part), plus the rate at which
energy is flowing out of the volume (the next three terms), is not zero, but equal to the term
on the right. This term, when it is, as here, negative, can only indicate a rate of destruction
of electromagnetic energy inside the volume. We owe to Lorentz its interpretation as the
rate at which the field loses energy by doing work on the current, assumed now to be con-
stituted by moving electrons. The energy lost by the field appears again in the form of extra
kinetic energy of the electrons, acted on by the Lorentz mechanical force, but, since the
current carried by the electrons is accompanied by a magnetic field, one must assume that
some at any rate of the energy lost is ultimately radiated back into the field. Now this is a
valuable method of describing what goes on where it is a matter of visible charged bodies
moving in an electric field, when the Lorentz force is in fact deducible from observation,
but it is not a method which can logically be applied in a formative theory of the electron.
If one has to assume the presence in the electron of mechanical energy not wholly accounted
for by the field, the attempt to formulate a field theory of matter has failed. On the other
hand, if all the energy of the electron is to be regarded as electromagnetic in character, the
classical formula (4-22) becomes hopelessly inadequate. The electrons in the unit volume
must in this case be included in the electromagnetic system; their energies and fluxes must
be accounted for completely by the left-hand side of the equation, and the only value of
the right-hand side consistent with conservation of energy is zero. It is clear that this con-
dition cannot be satisfied unless we admit the existence of energy and flux additional to
those recognized by the standard theory.

Turning now to the 'Z of (3-15), it may readily be verified from (4-10), (4-11), as before,
but now also making direct use of the conservation condition equation (4:134), that

OO Zu = A+ gclesethh) + 5 clee, B + L olese+ b

= telegtedyteg. T hk Ak, k). (4-15)
Let us distinguish the quantities here and those in (4-14) by the prefixes ¢ and 7, respectively.
Then (4-15) denotes that the rate at which /-energy is increasing in the fixed unit volume
(first term), plus the rate at which t-energy is flowing out of the volume (the next three terms),
is not zero, and the positive expression on the right indicates a rate of creation of ¢-energy
in the volume. This is identical with the rate at which r-energy is being destroyed in the
volume, so that, when the energies and fluxes of *Z are included along with those of 7Z in the
field system, the total energy is rigorously conserved.

Similar results are obtained for the momentum components from the three other rows
of Z. Combined they show that the excess of the rate of increase of the momentum in a unit
volume over the resultant force on the volume of the Maxwellian stress is respectively minus
and plus the Lorentz force (ej,+[jh] +hk,—[ke]) for - and -momentum and stress—the
latter result again requiring the use of (4-13). Thus here also the Lorentz force now operates
conservatively in the field, by transferring momentum from the 7- to the ¢-form (and con-
versely when the force is negative) ; and the transference occurs only in the places where

charge and current are situated.
25-2
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There is of course nothing very surprising in these conservation results; we are bound
to get them in some form for conservation has been imposed on the equations as a condition.
Nevertheless, there is considerable interest in the way in which the condition works out.
The condition not only indicates the necessity of extensions in the electromagnetic equations
but uself, when applied to Z, formulates the extended scheme. Secondly, conservation holds for
classical 7-energy and momentum and for ~energy and momentum separately at all places
in the field which are free of charge or current. In these places the classical equations are
completely satisfactory, it is only where charge and current are present that they show signs
of breaking down. It is also at these latter places alone that interchanges between r- and t-forms of
energy and momentum come into play, explaining and at the same time remedying the weakness of the
classical account. Finally, the rates of interchange are expressed by the activity and action
of a mechanical force as originally formulated by Lorentz. If electrons are regarded as
small charged particles of ‘matter’ set into motion by the action of the Lorentz force of the
field, the justification for this common practical treatment will not be ajfected in any way. It is only in
fundamental theory, or if one seeks to account for the electron’s mass as an electromagnetic
property, that the additional terms in the energy-stress matrix appear to require open
recognition.

(d) Summary

This paper has been concerned with the deduction from first principles, as briefly as
possible subject to making the meaning clear, of the field equations which would be expected
to be characteristic of fundamental matter. These are found to consist of the set of pairs of
equations (4-11) (by themselves applying to a completely arbitrary field), which are sub-
jected to the restrictions on the values of the variables (4:13) required to express conserva-
tion. The left-hand set of the equations (4-11) are also found to be identical with the electro-
magnetic equations in their standard form, provided they are subject to a restriction that

k=0, k=0, (4-16)

i.e. that magnetic charge and current are zero. (The two sets of restrictions (4-13) and (4-16)
are consistent, and may be assumed in operation together.) In the standard electromagnetic
equations, however, the right-hand side set of equations of (4:11) does not appear to have
been considered, yet it brings out the possibility of the existence of the extra variables, ¢, and
k,, one at least of which is essential if the conservation restrictions are to be obeyed.

Some matters which have been left over are the tensor character of the full equations,
the four potential and the mass density of the extended electromagnetic field, and the
enablement which the extension gives of formulating a purely electromagnetic theory of
the mass of the electron. It is hoped to deal with these in a later communication.
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